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1 Introduction

We study two-sided many-to-one matching markets that employ the student-proposing deferred ac-

ceptance (DA) mechanism. The DA mechanism is based on Gale and Shapley’s (1962) deferred ac-

ceptance algorithm and is used in a number of real-life matching markets. Two prominent examples

are the New York City high-school assignment system and the National Resident Matching Program

(NRMP). The latter is a clearinghouse that matches medical students to hospitals in the U.S.1 In view

of this application, we refer to agents on the “many” side of the market as students and to agents on

the “one” side of the market as hospitals.

An important property of matchings is stability. Stability requires that there is no individual

agent who prefers to become unmatched nor a pair of agents who prefer to be assigned to each

other (possibly in replacement of their current partners). Theoretically, stable matchings are robust

to rematching. Empirically, there is evidence that in centralized labor markets, clearinghouses that

employ stable mechanisms, i.e., mechanisms that select stable matchings with respect to reported

preferences, are more often successful than clearinghouses that employ unstable mechanisms.2

In practice, the DA mechanism asks for preferences over individual partners. So, it induces a

preference revelation game for agents. Dubins and Freedman (1981) show that in the game induced

by DA, it is a weakly dominant strategy for each student to report his true preferences over (individual)

hospitals. In light of this result, we assume throughout that students are truthful. It is worth noting that

the assumption that students play their weakly dominant strategy of truth-telling is made in most of

the literature, for example, Roth (1984b), Kojima and Pathak (2009), Ma (2010), and Jaramillo, Kayı

and Klijn (2013). Hospitals, on the other hand, can sometimes benefit from misrepresenting their

preferences (see Roth and Sotomayor; 1990, Example 4.1). A concern in the operation of real-life

matching markets that employ the DA mechanism is that preference misrepresentation by hospitals

can lead to outcomes that are not stable with respect to the agents’ true preferences.

When each hospital has a single position, the set of Nash equilibria outcomes of the game induced

by DA coincides with the set of stable matchings (Gale and Sotomayor, 1985 and Roth, 1984b).

Therefore, although misrepresentations by hospitals are possible, unstable equilibrium outcomes are

not a concern in one-to-one matching markets. Unfortunately, when hospitals have multiple positions,

equilibrium outcomes can be unstable (Roth and Sotomayor; 1990, Corollary 5.17).

1See Roth and Peranson (1999) for details on the design of the NRMP.
2See Roth (2002) for a comparison between stable and unstable mechanisms used in practice.
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We consider the case where each hospital has multiple positions and responsive preferences over

sets of students.3 Even under responsiveness, equilibrium outcomes can be unstable (Roth and So-

tomayor; 1990, Corollary 5.17). In this paper, we show that the “acyclicity” of the hospitals’ pref-

erence profile, a condition introduced by Romero-Medina and Triossi (2013a), is necessary and suf-

ficient to ensure that the outcome of any “dropping equilibrium” is stable with respect to the true

preferences. In what follows, we explain the concepts of acyclicity and dropping equilibrium.

To describe acyclicity consider an analog clock and let each number on the clock represent a

different student. The hospitals’ preference profile has a cycle (of length twelve) if hospital one

prefers student one to student two, hospital two prefers student two to student three and so on. Lastly,

hospital twelve prefers student twelve to student one. The hospitals’ preference profile is acyclic if it

has no cycles of any length.

Acyclicity ensures that the set of stable matchings is a singleton in one-to-one matching markets

(Romero-Medina and Triossi, 2013a) and in many-to-one matching markets (Akahoshi, 2014). In

practice, acyclic preference can arise if, for example, all students are ranked according to some criteria

such as test scores.4 If hospitals rely on such criterion, then individual students are ranked in the same

way by each hospital (and hence acyclicity is satisfied), although the rankings of sets of students are

not necessarily the same for every hospital.

A dropping strategy is obtained from a hospital’s true preference list by making some acceptable

students unacceptable, i.e., the order of any pair of acceptable students in the hospital’s submitted

list is not reversed with respect to its true preferences. The class of dropping strategies is strategi-

cally exhaustive: fixing the other hospitals’ strategies, the match obtained from any strategy can be

replicated or improved upon by a dropping strategy (Kojima and Pathak; 2009, Lemma 1). In other

words, any hospital can obtain the same or a better group of students by playing a dropping strategy.

The exhaustiveness property makes very plausible the use of dropping strategies. Therefore, focus-

ing on equilibria where each hospital plays a dropping strategy is reasonable. We call this type of

equilibrium a dropping equilibrium.

3A hospital’s preferences are responsive if (i) faced with two sets of students that differ only in one student, the hospital

prefers the set of students containing the more preferred student and (ii) as long as the hospital has unfilled positions, it

prefers to fill a position with an “acceptable” student rather than leaving it unfilled. We give a formal definition in the next

section.
4While this is not the case of the NRMP, test scores are used as the single criterion to rank students in other applications.

One example is the high school admissions system in Mexico City (see Chen and Pereyra, 2017).
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Dropping equilibria always exist. In particular, any stable matching can be obtained as the out-

come of a dropping equilibrium (Jaramillo, Kayı and Klijn; 2013, Proposition 1). As stated before, a

reason to restrict our analysis to dropping equilibria is that the use of dropping strategies is appealing

to hospitals given their simplicity and their exhaustiveness property. However, there are Nash equi-

librium outcomes that cannot be obtained as the outcome of a dropping equilibrium (Jaramillo, Kayı

and Klijn; 2013, Example 1). Therefore, while focusing on dropping equilibria is reasonable, it is not

an exhaustive analysis of equilibrium.

Our sufficiency result is as follows. Suppose that the hospitals’ preference profile is acyclic. Then,

the outcome of any dropping equilibrium is stable with respect to the true preferences. Intuitively,

this means that when the hospitals’ preference profile is acyclic and each hospital plays a dropping

strategy, we can expect the DA mechanism to deliver a stable outcome even if some hospitals are

dishonest about their true preferences.

The restriction to dropping equilibria is crucial for the result. In fact, in Example 1, we present a

market where (i) the hospitals’ preference profile is acyclic, (ii) there is an equilibrium in which one

hospital does not play a dropping strategy, and (iii) the equilibrium outcome is unstable.

We finish with the following necessity result: if the hospitals’ preference profile has a cycle, then

it is impossible to ensure that the outcome of every dropping equilibrium is stable for each profile of

students’ preferences and each vector of hospitals’ capacities.

Ma (2010) studies the same preference revelation game. He focuses on a subclass of dropping

strategies, the so-called truncation strategies. He shows that the outcome of any equilibrium in which

each hospital plays a truncation strategy is either unstable or coincides with the hospital optimal-

stable matching. Truncation strategies are not strategically exhaustive (Kojima and Pathak, 2009).

Moreover, “truncation equilibria” do not always exist (Ma, 2010).

Romero-Medina and Triossi (2013b) show that acyclicity is a necessary and sufficient condition

to ensure the stability of Nash equilibria outcomes in capacity reporting games. They also consider

generalized games of manipulation in which hospitals move first and state their capacities, and stu-

dents are then assigned to hospitals using a stable mechanism. In the latter setting, they show several

results about the implementation of stable matchings.

2 Model

We borrow notation from Jaramillo, Kayı and Klijn (2013).
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There are two finite sets of students S and of hospitals H . Let I = S ∪H be the set of agents.

We denote a generic student, hospital, and agent by s, h and i respectively. For each hospital h, there

is an integer capacity qh ≥ 1 that represents the number of positions it offers. Student s can work for

at most one hospital and hospital h can hire at most qh students. Let q = (qh)h∈H .

Each students s has a complete, transitive, and strict preference relation Ps over the hospitals

and the prospect of “being unmatched” (or some outside option), which is denoted by ∅. For h, h′ ∈

H ∪{∅}, we write hPs h
′ if student s prefers h to h′ (h 6= h′), and hRs h

′ if s finds h at least as good

as h′, i.e., hPs h
′ or h = h′. If h ∈ H is such that hPs ∅, then we call h an acceptable hospital for

student s. We represent the preferences of students over hospitals by a list of hospitals ordered from

the most preferred to the worst preferred in line from left to right. For example, Ps : h, h′, ∅, means

that h is s’s most preferred hospital, h′ is s’s second most preferred hospital and any other hospital is

unacceptable to s. Let PS = (Ps)s∈S .

Let h ∈ H . A subset of students S ′ ⊆ S is feasible for hospital h if |S ′| ≤ qh. Let Fh = {S ′ ⊆

S : |S ′| ≤ qh} denote the collection of feasible subsets of students for hospital h. The element ∅ ∈ Fh

denotes “being unmatched” (or some outside option). Hospital h has a complete, transitive, and strict

preference relation �h over Fh. For S ′, S ′′ ∈ Fh we write S ′ �h S
′′ if hospital h prefers S ′ to S ′′

(S ′ 6= S ′′) and S ′ �h S
′′ if hospital h finds S ′ at least as good as S ′′, i.e., S ′ �h S

′′ or S ′ 6= S ′′. Let

�= (�h)h∈H .

Let Ph be the restriction of �h to {{s} : s ∈ S} ∪ {∅}, i.e., individual students in S and being

unmatched. For s, s′ ∈ S ∪ {∅}, we write s Ph s
′ if s �h s

′, and sRh s
′ if s �h s

′.5 Let Ph be the

set of all such restrictions for hospital h. Agent s ∈ S is an acceptable student for a hospital h with

preferences relation Ph if s Ph ∅. We represent the preferences of a hospital over individual students

by a list of students ordered from the most preferred to the worst preferred in line from left to right.

For example, Ph : s, s′, ∅, means that s is h’s most preferred student, s′ is h’s second most preferred

student and any other student is unacceptable to h. Let PH = (Ph)h∈H and P = (PS, PH). Finally,

for H ′ ⊆ H , let PH′ = (Ph′)h′∈H′ and P−H′ = (Ph)h∈H\H′ .

We assume that for each hospital h, �h is responsive, or more precisely, a responsive extension

of Ph, i.e., for each S ′ ∈ Fh, (i) if s ∈ S \ S ′ and |S ′| < qh, then (S ′ ∪ s) �h S
′ if and only if s Ph ∅

and (ii) if s ∈ S \ S ′ and s′ ∈ S ′, then ((S ′ \ s′) ∪ s) �h S
′ if and only if s Phs

′.

A (many-to-one) market is given by (S,H, PS,�H , q) or, when no confusion is possible, (PS,�H

5With some abuse of notation we often write x for a singleton {x}.
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) for short. Let (PS,�H) be a market. A matching is a function µ on the set S ∪H such that (1) each

student is either matched to exactly one hospital or unmatched, i.e., for all s ∈ S either µ(s) ∈ H or

µ(s) = s; (2) each hospital is matched to a feasible set of students , i.e., for all h ∈ H, µ(h) ∈ Fh

and (3) a student is matched to a hospital if and only if the hospital is matched to the student, i.e., for

all s ∈ S and h ∈ H, µ(s) = h if and only if s ∈ µ(h).

A matching µ is individually rational if no agent would be better off by breaking a current match.

Formally, a matching µ is individually rational if for each s ∈ S and each h ∈ H , if µ(s) = h, then

hPs s and s Ph ∅.

A student-hospital pair (s, h) is a blocking pair for µ if (1) hPs µ(s), and (2)
[
|µ(h)| < qh and

s Ph∅
]

or there is s′ ∈ µ(h) such that s Ph s
′. A matching is stable if it is individually rational and

there are no blocking pairs. It is well-known that in many-to-one matching with responsive prefer-

ences, stability coincides with group stability, which excludes the existence of any larger blocking

coalition as well (see Roth and Sotomayor, 1990, Lemma 5.5). Since stability does not depend on

the particular responsive extensions of the agent’s preferences over individual acceptable partners, we

denote a market only by a preference profile P .

A mechanism assigns a matching to each market. We assume that capacities are commonly known

by the agents (because, for instance, capacities are determined by law). Therefore, the only informa-

tion that the mechanism asks from the agents are their preferences over the other side of the market.

Many real-life centralized matching markets only ask for the preferences P = (Pi)i∈I over individ-

ual partners, i.e., they do not depend on the particular responsive extensions. In this paper we focus

on the student-proposing deferred acceptance mechanism, DA, which is based on the Gale and

Shapley’s (1962) deferred acceptance algorithm. Let P = (PS, PH) be a profile (of preferences over

individual agents). Then, the outcome of DA is denoted by DA(P ) and it is computed as follows.

Step 1: Each student s proposes to the hospital that is ranked first in Ps (if there is such hospital

then s remains unmatched). Each hospital h considers its proposers and tentatively assigns its qh

positions to these students one at a time following the preferences Ph. All other proposers are rejected.

Step k, k ≥ 2: Each student s that is rejected in Step k − 1 proposes to the next hospital in his

list Ps (if there is no such hospital then s remains single). Each hospital h considers the students that

were tentatively assigned a position at h in Step k − 1 together with its new proposers. Hospital h

tentatively assigns its qh positions to these students one at a time following the preferences Ph. All

other proposers are rejected.
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The algorithm terminates when no student is rejected. Then, all tentative matches become final

and DA(P ) is the resulting matching. Gale and Shapley (1962, p.14) proved that DA(P ) is stable

with respect to P . Moreover, DA(P ) is called the student-optimal stable matching since it is the

best (worst) stable matching for the students (hospitals) with respect to P (Gale and Shapley, 1962,

Theorem 2 and Roth and Sotomayor, 1990, Corollary 5.32).

Under DA, it is a weakly dominant strategy for the students to reveal their true preferences (Roth,

1985, Theorem 5*). Since we focus on DA, we assume that students are truthful and that hospitals

are the only strategic agents. Henceforth we fix and suppress PS .

A strategy is an (ordered) preferences list of a subset of students. More precisely, for each hospi-

tal h, Ph is the set of strategies and P ≡ ×h∈HPh is the set of strategy profiles, DA is the outcome

function, and the outcome is evaluated through the (true) preference relations �H . A profile of strate-

gies Q is a Nash equilibrium of the game (H, P , DA, �H) if for each hospital h and each strategy

Q′h, DA(Q)(h) �h DA(Q′h, Q−h)(h). When no confusion is possible, a game (H,P , DA,�H) is

denoted by �H . A result due to Roth (1982, Theorem 3) implies that submitting its true preferences

is in general not a weakly dominant strategy for a hospital.

A dropping strategy of a hospital is an ordered list obtained from its true ordered list of acceptable

students by removing some acceptable students, i.e., the order of any pair of students in the hospital’s

submitted list is not reversed with respect to its true preferences (Kojima and Pathak, 2009). Formally,

for a hospital h with preferences Ph over individual students, P ′h is a dropping strategy if for any

students s, s′ ∈ S, [if sR′h s
′R′h ∅, then sRh s

′Rh ∅]. Finally, a dropping equilibrium is a Nash

equilibrium in which each hospital plays a dropping strategy.

We define an acyclicity condition on profiles of hospitals’ preferences introduced by Romero-

Medina and Triossi (2013a).

A profile of hospitals’ preference relations, PH , has a cycle of length l ≥ 2 if there are l

distinct hospitals h1, h2, . . . , hl ∈ H and l distinct students s1, s2, ..., sl ∈ S such that for each

i ∈ {1, 2, . . . , l}, si+1 Phi
si Phi

∅, where sl+1 ≡ s1. If PH has no cycle, it is acyclic.

If there is a cycle of length l, it is denoted by {Ph1 , Ph2 , . . . , Phl
; s1, s2, . . . , sl}.

When each hospital’s preferences are responsive, the acyclicity of the hospitals’ preference pro-

file ensures that the set of stable matchings is a singleton (Romero-Medina and Triossi, 2013a and

Akahoshi, 2014).
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3 Results

In this section, we present two main results. Our first (main) result is that if the hospitals’ preference

profile is acyclic, then any dropping equilibrium outcome is stable. When students and hospitals are

truthful, we can be confident that the outcome of the DA mechanism is going to be stable. However,

hospitals can sometimes benefit by misrepresenting their preferences and by doing so, they undermine

the stability of the DA outcome. Intuitively, our first result establishes that when the profile of hospi-

tals preferences is acyclic and each hospital plays a dropping strategy, we can expect the outcome of

DA to be stable even if hospitals are dishonest about their true preferences. In this sense, we provide

theoretical support for the well functioning of certain matching markets in practice.

We start by stating the following useful lemma.

Lemma 1. Let Q̃ be a dropping equilibrium of the game �H . Suppose µ = DA(Q̃) is blocked by a

pair (s′, h′) at P . Then, there is µ′ such that

(A) µ′(h′) 6= µ(h′)

(B) |µ(s)| = |µ′(s)| for each s ∈ S and |µ(h)| = |µ′(h)| for each h ∈ H .

Moreover, for each h ∈ H with µ(h) 6= µ′(h),

(C) if h 6= h′, then |µ(h)| = |µ′(h)| = qh.

(D) if h 6= h′, then µ(h) \ µ′(h) 6= ∅ and µ′(h) \ µ(h) 6= ∅.

(E) for each r ∈ µ(h) and s ∈ µ′(h) \ µ(h), r Q̃h s.

The proof of Lemma 1 is in the Appendix.

Now we are ready to state and prove our main result.

Theorem 1. Assume PH is acyclic. Let Q be a dropping equilibrium of the game �H . Then, DA(Q)

is stable at P .

Proof: Let µ = DA(Q). Since Q is an equilibrium, µ is individually rational at P . Assume by

contradiction that µ is blocked by some pair (s′, h′) at P . By Lemma 1 there is µ′ that satisfies (A),

(B), (C), (D) and (E).

Apply the following algorithm based on an algorithm in Akahoshi (2014, page 11) to µ and µ′ and

obtain sequences of hospitals and students.

Algorithm 1.6

Step 1. Let h1 ≡ h′ and s2 ∈ µ(h1) \ µ′(h1). Define h2 ∈ H \ {h1} by h2 ≡ µ′(s2).
6Algorithm 1 is based on the algorithm described by Akahoshi (2014) in page 11, paragraph 4.
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Step (k ≥ 2): Choose sk+1 ∈ S such that sk+1 ∈ µ(hk) \ µ′(hk) ans hk+1 ∈ H \ {hk} such that

hk+1 ≡ µ′(sk+1). If hk+1 ∈ {h1, h2, . . . , hk−1}, then the algorithm terminates. If not, go to the next

step.

Output: If the algorithm terminates at Step l ≥ 2 with hl+1 = hj (j ≥ 1), let the output be given by

the hospitals {hj, hj+1, . . . , hl} and the students {sj+1, sj+2, . . . , sl+1}. ♦

We first show that the algorithm is well-defined. The existence of s2 and h2 follows from Lemma

1 (A) and (B). At step k, since sk ∈ µ′(hk) \ µ(hk), we can take hk+1 ∈ H such that hk+1 = µ′(sk+1)

and hk+1 6= hk by Lemma 1 (B). Since H is finite, the algorithm terminates in finitely many steps.

By construction, when the algorithm terminates at step l, the output satisfies the following:

sj+1 ∈ µ(hj) \ µ′(hj) sl+1 ∈ µ′(hj) \ µ(hj)

sj+2 ∈ µ(hj+1) \ µ′(hj+1) sj+1 ∈ µ′(hj+1) \ µ(hj+1)
...

...

sl+1 ∈ µ(hl) \ µ′(hl) sl ∈ µ′(hl) \ µ(hl)

We show thatQH has a cycle {Qhj
, Qhj+1

, . . . , Qhl
; sl+1, sj+1, sj+2, . . . , sl}. Since hj, hj+1, . . . , hl

are all distinct, so are sj+1, sj+2, . . . , sl+1. For each k ∈ {j + 1, j + 2, . . . , l}, sk ∈ µ′(hk) and

sk+1 ∈ µ(hk). Furthermore, sl+1 ∈ µ′(hj) and sj+1 ∈ µ(hj). Therefore, by Lemma 1 (E),

sk+1Qhk
skQhk

∅ for each k ∈ {j + 1, j + 2, . . . , l}, and sj+1Qhj
sl+1 Q̃hj

∅. Hence,

{Qhj
, Qhj+1

, . . . , Qhl
; sl+1, sj+1, sj+2, . . . , sl} is a cycle for QH .7 N

Since QH consists of dropping strategies, the cycle in QH is also a cycle in PH . This is a contra-

diction to the acyclicity of PH .

When hospitals have responsive preferences, acyclicity is a sufficient condition for the set of stable

matchings to be a singleton (see Romero-Medina and Triossi, 2013a and Akahoshi, 2014). Thus, the

next result is obtained as an immediate corollary to Theorem 1 in this paper.

Corollary 1. Assume PH is acyclic. LetQ be a dropping equilibrium of the game�H . Then, DA(Q)

is the unique stable matching at P . In particular, DA(Q) = DA(P ).

Example 1. (Unstability of non dropping equilibrium.)

Jaramillo, Kayı and Klijn (2013) present the following many-to-one market with 4 students, 2 hos-

7The construction process of cycles in this proof is very similar to that in Akahoshi (2014, page 11).
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pitals, and preferences over individual partners P given by the columns in Table 1.8 Both hospitals

have capacity 2.

Table 1: Preferences P in Example 1

Hospitals Students

Ph1
Ph2

Ps1 Ps2 Ps3 Ps4

s1 s4 h2 h1 h1 h1

s2 s1 h1 h2 h2 h2

s3 s2

s3

Jaramillo, Kayı and Klijn (2013) use this market to show that there are equilibrium outcomes that

cannot be obtained as the outcome of a dropping equilibrium. We use this same market to show that

even if PH is acyclic, there can be equilibria in which at least one hospital does not play a dropping

strategy (non dropping equilibrium), and the outcome it induces is unstable.

To check for the acyclicity of PH , it is enough to note that (i) the set of students that are acceptable

to both hospitals h1 and h2 is {s1, s2, s3}, and that (ii) both hospitals rank s1, s2, s3 in the same order.

Furthermore, from Jaramillo, Kayı and Klijn (2013), we know the following about market P :

(1) There is a unique stable matching for P , and it is given by

h1 h2

DA(P ) : | |

{s2, s3} {s1, s4}

which is the boxed matching in Table 1.

(2) The strategy profile Q = (Qh1 , Qh2), where Qh1 : s1, s2, s4, s3 and Qh2 : s4, s2, s3 for

hospitals h1 and h2 is a Nash equilibrium, and it induces the matching

8For example, the first column of Table 1 depicts the preference Ph1 : s1, s2, s3. Note that student s4 is not acceptable

for hospital h1.
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h1 h2

DA(Q) : | |

{s1, s2} {s3, s4}

which is the boldface matching in Table 1.

(3) DA(Q) cannot be obtained in any equilibrium that consist of dropping strategies.

Clearly, Qh1 is not a dropping strategy. Moreover, since DA(Q) 6= DA(P ), DA(Q) is a unstable

matching.

This example shows that acyclicity cannot ensure the stability of non dropping equilibrium out-

comes.

The existence of a cycle in the hospitals’ preference profile makes it impossible to ensure the

stability of dropping equilibrium outcomes for every profile of students’ preferences and every vector

of capacities. That is, acyclicity of hospitals’ preference profile is necessary to ensure the stability of

dropping equilibrium outcomes. This result implies that if a single cycle is identified in the hospitals’

preference profile, then there is no guarantee that the outcome of DA will be stable.

Proposition 1. Assume that PH has a cycle. Then, there are preferences Ps for each s ∈ S, a capacity

qh and a dropping strategy Qh for each h ∈ H such that the profile QH is a Nash equilibrium of the

game �H and DA(PS, QH) is not stable.

The proof to Proposition 1 is relegated to the Appendix.

Example 2. (A market with an unstable dropping equilibrium outcome.)

Consider a market with 2 hospitals and 3 students. Let the hospitals’ preference profile PH be

given by the columns in Table 2.

Table 2: A hospitals’ preference profile with a cycle

Hospitals

Ph1
Ph2

s1 s2

s2 s1

s3 s3
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Since s1 Ph1 s2 Ph1 ∅ and s2 Ph2 s1 Ph2 ∅, the hospitals’ preference profile PH has a cycle {Ph1 , Ph2 ; s1, s2}.

By Proposition 1, it is possible to find a preference Psi for each i = 1, 2, 3; a capacity qhi
and a drop-

ping strategy Qhi
for each i = 1, 2, such that QH = (Qh1 , Qh2) is an equilibrium and DA(PS, QH) is

unstable.

We let hospitals’ capacities be qh1 = 2 and qh2 = 1 and student’s preferences be as in Table 3.

Table 3: Preferences P in Example 2

Hospitals Students

Ph1
Ph2

Ps1 Ps2 Ps3

s1 s2 h2 h1 h1

s2 s1 h1 h2 h2

s3 s3

Consider the following dropping strategies Qh1 : s1, s3 for hospital h1, and Qh2 = Ph2 : s2, s1, s3

for hospital h2. Routine computations9 show that QH = (Qh1 , Qh2) is a Nash equilibrium and it

induces the matching

h1 h2

DA(PS, QH) : | |

{s1, s3} {s2}

which is the boxed matching in Table 3.

Finally, note that the matching DA(PS, QH) is unstable as it is blocked by s2 and h1.

4 Final Remarks

Roth (2002) documents that in matching markets in practice, stable mechanisms are more often suc-

cessful than unstable ones. For example, unstable mechanisms for regional medical markets in Birm-

ingham, Newcastle or Sheffield were replaced while several other stable mechanisms like the medical

9From Kojima and Pathak (2009, Lemma 1) it follows that it is enough to only consider dropping strategies for possible

profitable deviations.
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regional market in Cardiff, the NRMP or dental residencies in the U.S. are still in use (See Roth, 2002,

for more details). This is so despite the fact that stable mechanism like the the DA mechanism are

manipulable or their equilibrium outcomes can be unstable. In this paper, we provide further theoret-

ical evidence as to why markets that employ DA may perform well in real-life applications. We show

that when each hospital plays a dropping strategy, acyclicity is a necessary and sufficient condition to

ensure that equilibrium outcomes are stable. A question that remains open is to provide a condition

that ensures the stability of equilibrium outcomes when no restriction on the type of strategies that

hospitals can play is imposed.
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Appendix

Proof of Lemma 1

In order to prove Lemma 1, we introduce the following notation. For every integer k ≥ 1, let

X(Q, h, k) be the set of students that will have proposed to hospital h by step k under DA(Q), i.e., in

some step l ∈ {1, . . . , k} of DA(Q), and let m(Q, h, k) be the set of students tentatively matched to

h in some step l ∈ {1, . . . , k} of DA(Q). Let X(Q, h) be the set of students that will have proposed

to h by the last step of DA(Q), i.e., X(Q, h) = ∪kX(Q, h, k).

We prove Lemma 1 by proving a series of claims. Let Qh′ list all students in µ(h′) in the same

relative order as in Ph′ and report every other student as unacceptable. Let Q = (Qh′ , Q̃−h′). Let Q′h′

lists all students in µ(h′) ∪ {s′} in the same relative order as in Ph′ and report every other student as

unacceptable. Let Q′ = (Q′h′ , Q̃−h′) and let µ′ = DA(Q′).

Claim 1. DA(Q) = µ.

Proof. Clearly, µ is individually rational at Q. Moreover, if a pair (s, h) blocks µ at Q, then (s, h)

would also block µ at P . Hence, µ is stable at Q.

Now we show that DA(Q) is stable at Q̃. Clearly, DA(Q) is individually rational at Q̃. Assume

that s ∈ S and h ∈ H \ {h′} block DA(Q) at Q̃. Since Qs = Q̃s and Qh = Q̃h, then (s, h) would

also blockDA(Q) atQ which is a contradiction to the stability ofDA. So, we conclude that no s ∈ S

and h ∈ H \ {h′} block DA(Q) at Q̃.

Now we show that no s ∈ S and h′ block DA(Q) at Q̃. Since both µ and DA(Q) are stable at Q,

by Roth (1984a), |DA(Q)(h′)| = |µ(h′)|. Moreover, since only the students in µ(h′) are acceptable

to h′ under Qh′ , DA(Q)(h′) = µ(h′). Assume by contradiction that s ∈ S and h′ block DA(Q) at

Q̃. Then, [|µ(h′)| < qh′ or s Q̃h′ s∗ for some s∗ ∈ µ(h′)] and h′ PsDA(Q)(s). Since DA(Q) and µ

are stable at Q and DA(Q) is the student optimal stable matching at Q, DA(Q)(s)Rs µ(s). Hence,

h′ Ps µ(s). Therefore, s and h′ also block µ = DA(Q̃) at Q̃, but this contradicts the stability of DA.

Thus, DA(Q) is stable at Q̃.

Since µ is stable at Q, DA(Q) is weakly preferred by all students to µ. Moreover, since DA(Q)

is stable at Q̃, µ = DA(Q̃) is weakly preferred by all students to DA(Q). Therefore, µ = DA(Q)

as desired. N
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Claim 2. (A) holds, i.e., µ(h′) 6= µ′(h′).

Proof. Student s′ proposes to h′ at the same step under DA(Q) and under DA(Q′). Furthermore,

s′ is tentatively accepted by h′ at DA(Q′). Since s′ and h′ block µ at P, |µ(h′)| < qh′ or s′ Ph′ s∗

for some s∗ ∈ µ(h′). Since Q′h′ lists students in µ(h′) ∪ {s′} according to Ph′ and lists any other

student as unacceptable, s′ is not rejected in any latter step of DA(Q′). Thus, s′ ∈ µ′(h′), and hence

µ′(h′) 6= µ(h′). N

Claim 3. For each hospital h and each step k, X(Q′, h, k) ⊆ X(Q, h, k).

Proof. For k = 1 the inclusion is in fact an equality since at step 1 of DA(Q′) and DA(Q) each

student proposes to exactly the same hospital.

Assume that the inclusion holds for k. We will show that the inclusion also holds for k + 1.

Let s ∈ X(Q′, h, k + 1). If s ∈ X(Q′, h, k), then by induction, s ∈ X(Q, h, k) and hence s ∈

X(Q, h, k) ⊆ X(Q, h, k + 1). So, assume s ∈ X(Q′, h, k + 1) \ X(Q′, h, k). Then, in DA(Q′),

student s proposed to h at step k + 1 but not at step k. So, s was rejected by some hospital h̄ 6= h at

step k of DA(Q′). By the induction hypothesis, s ∈ X(Q′, h̄, k) ⊆ X(Q, h̄, k). If h̄ 6= h′, then h̄ will

also have rejected s by step k of DA(Q) since Q′
h̄

= Qh̄. Assume h̄ = h′. We consider two cases.

Case 1. s = s′ or s /∈ µ(h′). Then, ∅Qh′ s. Thus, h̄ will also have rejected s by step k of

DA(Q).

Case 2. s 6= s′ and s ∈ µ(h′). By definition of Q′h′ , sQ′h′ ∅. Since s is rejected by h′

at step k of DA(Q′), (i) |m(Q′, h′, k)| = qh′ and (ii) for each student s∗ ∈ m(Q′, h′, k),

s∗Q′h′ s. By responsiveness and the fact that Q′h′ is a dropping strategy obtained from Ph′ ,

m(Q′, h′, k)Ph′ µ(h′). Moreover, by the definition of DA, µ′(h′)Rh′ m(Q′, h′, k). Hence,

µ′(h′)Ph′ µ(h′). This implies that Q′h′ is a profitable deviation for h′ contradicting that Q is an

equilibrium. Therefore, s is not rejected by h′ at step k of DA(Q′). This contradicts the fact

that s is rejected by h′ at step k of DA(Q′). Thus, Case 2 is impossible.

Since s is rejected by h̄ at step k of DA(Q) and he makes his proposals in the same order in

DA(Q) andDA(Q′), he will have proposed to h by step k+1 ofDA(Q). Hence, s ∈ X(Q, h, k+1).

N
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We complete the proof. (B) By Claim 3 and the fact that µ′ 6= µ (Claim 2), µ′ is weakly preferred

by all students to µ. Then, the first part of (B) follows from (i) and (iii) of Lemma 1 in Erdil and

Ergin (2008, page 684). The second part of (B) follows from (i) and (ii) of Lemma 1 in Erdil and

Ergin (2008, page 684). (C) If h 6= h′ and µ(h) 6= µ′(h), then by (B) there is r ∈ µ(h) \ µ′(h) and

s ∈ µ′(h) \ µ(h) such that r, s ∈ S. Moreover, since Qh = Q′h, r and s are acceptable under both Qh

and Q′h. Assume by contradiction that |µ′(h)| < qh. By Claim 3, s ∈ µ′(h) ⊆ X(Q′, h) ⊆ X(Q, h).

Therefore, s ∈ µ(h), but this is a contradiction. Hence, |µ′(h)| = qh. Using (B), we conclude

|µ(h)| = |µ′(h)| = qh. (D) follows from (C) and the fact that µ(h) 6= µ′(h). (E) Since µ′ Pareto dom-

inates µ for students and s ∈ µ′(h) \ µ(h), h Ps µ(s). Assume by contradiction that s Q̃h r ∈ µ(h).

Then, s and h block µ at Q̃ contradicting the stability of DA.

Proof of Proposition 1

Assume that PH has a cycle of length l ≥ 2, given by

{Ph1 , Ph2 , . . . , Phl
; s1, s2, . . . , sl}.

We define a preference profile for the students as follows. For each i = 1, . . . , l let Psi : hi, hi−1, ∅,

where h0 ≡ hl. For each s, s′ ∈ S \ {s1, . . . , sl} let Ps = P ′s and ∅Ps h for each h ∈ {h1, . . . hl}.

That is, all other students have the same preferences and any hospital h1, . . . , hl is unacceptable to

them. The preferences of hospitals {h1, . . . , hl} and students {s1, . . . , sl} are depicted below, vertical

dots mean that preferences can be arbitrary, while horizontal dots mean that the pattern of the given

sequence continues until it reaches its final element.

Ph1 Ph2 . . . Phl
Ps1 Ps2 . . . Psl

...
... . . .

... h1 h2 . . . hl

s2 s3 . . . s1 hl h1 . . . hl−1

...
... . . .

... ∅ ∅ . . . ∅

s1 s2 . . . sl
...

... . . .
...

...
... . . .

...

∅ ∅ . . . ∅
...

... . . .
...
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Let qh = 1 for all h ∈ H \ {h1} and qh1 = 2. Consider the dropping strategy for h1, P
′
h1

: s2, ∅

and the profile P ′ = (P ′h1
, P−h0). Note that at P ′ all hospitals play a dropping strategy and all students

report their true preferences. Let µ′ = DA(P ′).

We show that for each i = 1, . . . , l, µ′(hi) = {si+1}, where sl+1 ≡ s1. At DA(P ′) no student

s ∈ S \ {s1, . . . , sl} proposes to a hospital in {h1 . . . hl}. Furthermore, each student si, i = 1, . . . , l,

proposes to hi at the first step of DA(P ′). Each student si, i = 2, . . . , l, is tentatively accepted.

However, s1 is rejected by h1. Therefore, s1 proposes to hl at step 2, hl tentatively accepts s1 and

rejects sl, sl proposes to hl−1 at step 3, hl−1 tentatively accepts sl and rejects sl−1. This process

continues until s2 proposes to h1, h1 tentatively accepts s2. At this point no si, i = 1, . . . , l, makes

more proposals so the the acceptances become final.

We show that P ′ is a Nash equilibrium. Each hi, i = 2, . . . sl fills its capacity with the best student

among the students who find hi acceptable. Therefore, no hi, i = 2, . . . sl has a profitable deviation.

To show that h1 has no profitable deviations either, it is enough to show that h1 cannot improve by

listing s1 as acceptable. Let P ′′h′ be such that s1 P
′′
h1
∅ and P ′′ = (P ′h1

, P−h0). At the first step of

DA(P ′′) each student si, i = 1, . . . , l, proposes to hi. Furthermore, each students si, i = 1, . . . , l,

is tentatively accepted. Therefore, no si, i = 1, . . . , l, makes more proposals and the acceptances

become final. Since DA(P ′′)(h1) = {s1} and s2 Ph1 s1, P ′′ is not a profitable deviation. Hence P ′ is

an equilibrium.

To complete the proof note that since (i) h1 Ps1 µ
′(s1) = hl, (ii) |µ′(h1)| = 1 < qh1 = 2 and

(iii) s1 is acceptable to h1, h1 and s1 block µ′ under the true preferences. Thus, µ′ is not stable with

respect to P .
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